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Abstract. In network analysis, it is often desired to determine the most
central node of a network, for example for identifying the most influential
individual in a social network. Borgatti states that almost all centrality
measures assume that there exists a process moving through the network
from node to node [4]. A node is then considered as central if it is impor-
tant with respect to the underlying process. One often used measure is
the betweenness centrality which is supposed to measure to which extent
a node is ”between” all other nodes by counting on how many shortest
paths a node lies. However, most centrality indices make implicit assump-
tions about the underlying process. However, data containing a network
and trajectories that a process takes on this network, are available: this
can be used for computing the centrality. Hence, in this work, we use
existing data sets, human paths through the Wikipedia network, human
solutions of a game in the game’s state space, and passengers’ travels be-
tween US American airports, in order to (i) test the assumptions of the
betweenness centrality for these processes, and (ii) derive several variants
of a ”process-driven betweenness centrality” using information about the
network process. The comparison of the resulting node rankings yields
that there are nodes which are stable with respect to their ranking while
others in- or decrease in importance dramatically.

Keywords: network analysis, centrality measures, network processes,
path data analysis

1 Introduction

An often performed task in network analysis is the identification of the most
important nodes in a network. The goal might be to find the most influential
individual in a social network, the most vulnerable location in a transportation
network, or the leader in a terrorist network [6,17]. The identification of such
nodes is usually done with a centrality measure which computes a value for each
node of the network based on the network structure [2,20,10]. The concept of
centrality in networks was first introduced by Bavelas in the late 1940s who
considered human communication networks [2]. Inspired by this idea, a large
number of different methods for measuring the centrality of a node were pro-
posed in the following decades, where the best known centrality measures are
degree centrality [9], closeness centrality [9], betweenness centrality [9,1], and
Eigenvector centrality [3] (for an overview, cf. [5] or [14]).



Fig. 1. Introductory example. Node A can
be seen as a gatekeeper between the two
node groups. Classic betweenness central-
ity hence assigns a high value to A. If, how-
ever, the network process only moves within
the two groups (indicated by boldly drawn
edges), should A still be considered as the
most central node of the network?

An important contribution was
made by Borgatti who states that al-
most all centrality indices are based
on the assumption that there is some
kind of traffic (or communication or
process) flowing through the network
by moving from node to node [4]. This
might be the propagation of informa-
tion in a social network, packages be-
ing routed through the WWW, or the
spreading of a disease in human in-
teraction networks. A node is then
considered as central, i.e., is assigned
a high value of the measure, if it is
somehow important with respect to this underlying process. However, differ-
ent centrality measures make different assumptions about the process flowing
through the network. Some measures are based on shortest paths in the net-
work, assuming that the underlying process moves on shortest paths. Other
assume that, if whatever flows through the network, is at one node will spread
simultaneously to all the node’s neighbors, while others assume that it can only
be at one node at a time.

Borgatti provides a typology of the most popular centrality measures by con-
sidering the network process [4] and argues that centrality measure values for
a network can only be interpreted in a meaningful way, if the assumptions of
the measure respect the properties of the process. He identifies two different di-
mensions by which the process can vary: First, on which type of trajectory does
the process move through the network, and second, how does the process spread
from node to node? For the first dimension, he differentiates between shortest
paths, paths (not necessarily shortest, but nodes and edges can only occur at
most once in it), trails (edges might occur several times in it, while nodes cannot
be repeated), and walks (in which nodes and edges might occur several times).
The second identified dimension is the “mechanism of node-to-node transmis-
sion”: a process might transfer a good from node to node (e.g., a package), or it
passes something to the next node by duplicating it: whatever flows through the
network is passed to the next node and simultaneously stays at the current node
(e.g., information flowing through a network or a viral infection: it will still be
at the current node after it was passed to another node). Duplication can take
place in a serial (one neighbor at once) or in a parallel manner (simultaneously to
all neighbors). This categorization is a helpful tool for choosing an appropriate
centrality measure, given a network and a process on the network.

The betweenness centrality is an often used centrality measure in social net-
work analysis [9,1]. The idea is to measure to which extent a node v is positioned
“between” all other nodes. A node with a high betweenness value is assumed to
have control over other nodes: by passing information or withholding it, it can
control the information flow. Consider for example the graph in Fig. 1 in which



node A can be seen as gatekeeper between the left subgraph and the right sub-
graph: A can prevent information being passed to the other subgraph because all
paths between the two subgraphs pass through A. Betweenness centrality counts
how many shortest paths from any node s to any other node t pass through the
given node v and averages over all node pairs (s, t). In order to account for cases
in which there are many shortest paths between s and t, but only a few of them
pass through v, the measure normalizes by the total number of shortest paths
between s and t. Formally, with σst denoting the number of shortest paths from
a node s to a node t (with σst = 1 if s = t) and with σst(v) denoting the number
of shortest paths from s to t that pass through v,we can define the betweenness
centrality for a node v as1

Bc(v) =
∑
s∈V,
s6=v

∑
t∈V,
s6=t 6=v

σst(v)

σst

According to Borgatti [4], this measure is appropriate for networks on which
the process of interest literally moves from node to node by a transfer mechanism
and travels on shortest paths. This becomes obvious in Fig. 1: if there was added
two additional nodes D′ and E′, and edges linking D to D′, D′ to E′ , and E′

to E, the high importance of A as a gatekeeper can only be still justified if the
process exclusively takes shortest paths and can only take one path at once.

When taking a closer at the formula, it is easy to see that there are even
more simplifying assumptions in this measure: it assumed that the process flows
between any node pair (s, t) and the amount of traffic flowing from s to t is equal
(and equally important) for all node pairs. For a given network with a process
fulfilling the two main assumptions, these further assumptions are justifiable:
if there is no other information about the process available, these assumptions
are the best possible. However, if the information of how the process moves
through the network is available, the importance of the nodes can be measured
differently. Consider again Fig. 1 in which the bold directed edges indicate that
there is communication between those nodes and no communication between
the other nodes. Hence, in both groups, there are many entities moving from
one of the upper nodes to (the) one node below, using the nodes B and C,
respectively, but no entity moving from one group to the other. Although the
assumptions of moving on shortest paths and by a transfer mechanism are met,
should the node A still be considered as the most central node if there is actually
no communication at all between those two groups?

However, there are data sets available containing a network structure and
trajectories that the network’s process has taken. It is therefore possible to ac-
tually use the information of how the process moves through the network in
order to assign a centrality value to the nodes. It is clear that this is a differ-
ent approach than the classic betweenness centrality or other existing centrality
measures: classic centrality indices solely use the structure of the given graph in

1 In literature, it is often noted as CB . Since we are only considering this centrality
measure and for a better readability in Sec. 6, we use this notation.



order to compute centrality values for the nodes – the choice which centrality
index is appropriate for this network can then taken based on the knowledge
about the properties of the process. Here, the information about the process is
already used for computing the centrality value.

Hence, the contribution of this work is the following: we use three data sets in
order to (i) investigate whether the assumptions of the betweenness centrality are
met by those processes, and (ii) incorporate the information about the process
contained in the data sets into a process-driven betweenness centrality (PDBC).
Several variants of PDBC measures are introduced in order to analyse which
piece of information affects the node ranking in which manner. For example, one
variant only counts the shortest paths between those node pairs which are source
and destination of the process at least once. Another variant does not count the
number of shortest paths, but counts the number of actually used trajectories in
which a node is contained. Those variants are then applied on the available data
sets and the resulting node rankings of each variant compared to each other.
It can be observed that the resulting rankings show a high correlation to each
other, but there are nodes whose importance in- or decreases considerably.

This article is therefore structured as follows: Section 2 introduces the nec-
essary definitions and notations before Sec. 3 presents related work in this area.
Section 4 gives a description of the available data sets. Section 5 discusses the
assumptions of the betweenness centrality and tests whether those assumptions
are met in the data sets. Section 6 will introduce four variants of a process-driven
betweenness centrality and Sec. 7 discusses the results of the PDBC measures on
the given data sets, before Sec. 8 summarises the articles and gives an outlook
for future work.

2 Definitions

G = (V,E) denotes a directed simple unweighted graph with vertex set V , and
edge set E ⊆ V × V . A path is an alternating (finite) sequence of nodes and
edges, P = (v1, e1, v2, . . . , ek−1, vk) with vi ∈ V and ej = (vj , vj+1) ∈ E for
all i ∈ {1, . . . , k} and j ∈ {1, . . . , k − 1}, respectively2. Since G is simple, P is
uniquely determined by its node sequence and the notation can be simplified
to P = (v1, v2, . . . , vk). The length of a path P (|P |) is defined as its number
of (not necessarily distinct) edges. The start node of the path P is denoted by
s(P ) = v0, the end node by t(P ) = vk (occasionally referred to as source/start
and destination/target). Let d(v, w) denote the length of the shortest path from
node v to node w. If w cannot be reached from v, we set d(v, w) :=∞.

3 Related Work

As illustrated in Sec. 1, the betweennness centrality contains several assumptions.
Since these assumptions are not met in all networks and all processes, there have

2 Note that we do not require the nodes and edges to be pairwise distinct. In some
literature, P would be referred to as a walk.



been proposed many variants of the betweenness centrality. The most prominent
variants questioning the assumption of shortest paths are the flow betweenness
centrality of Freeman [11], and the random walk betweenness centrality by New-
man [16], but there are also variants as routing betweenness [7] or variants for
dynamic networks where paths up to a certain factor longer than the shortest
one contribute to the centrality [6]. A variant questioning the assumption that all
paths contribute equally to centrality value is the length-scaled betweenness [5].

Path analysis The idea of analysing the process moving through a network is not
new. In many real-world networks, entities use the network to navigate through
it by moving from one node to the other. This includes Internet users surfing the
web yielding clickstream data, or passengers travelling through a transportation
network. The navigation of an entity in a network to a target node, but with
only local information about the network structure is called decentralized search.
The fact that humans are often able to find surprisingly short paths through a
network was already illustrated by Milgram in his famous small world exper-
iment in 1967 [15]. An answer of how humans actually find these short paths
was not known before Kleinberg investigated which effect the network struc-
ture has on the performance of any decentralized search algorithm [13]. West
and Leskovec analysed the navigation of information seekers in the Wikipedia
networks [23] and also find that human paths are surprisingly short, and show
similar characteristics in their structure. This is also found by Iyengar et al. [21]
who considered human navigation in a word game.

Combination of centrality and path analysis There are approaches of using the
information about the network process in order to infer knowledge about the net-
work itself: West et al. [24] use the paths of information seekers in the Wikipedia
network to compute a semantic similarity of the contained articles. Rosvall
et al. [19] show how real-word pathway data incorporated into a second-order
Markov model has an effect on the node rankings in an approach generalising
PageRank, and can derive communities of the network by the network’s usage
patterns. Zheng [26] identify popular places based on GPS sequences of trav-
ellers. Also based on GPS trajectories, the approach of Yuan et al. [25] makes
use of Taxi drivers’ trajectories in order to compute the effectively quickest path
between two places in a city. Dorn et al. [8] can show that the results of be-
tweenness centrality in the air transportation network significantly change if the
centrality considers the number of actually taken paths traversing through an
airport instead of all possible shortest paths.

4 Data sets

The goal is to investigate whether the assumptions built into the betweenness
centrality are actually met by a data set containing the information how a pro-
cess moves in a network. Since we consider the betweenness centrality, it is,
according to Borgatti [4], only meaningful to consider processes which (i) move



by a transfer mechanism, and (ii) move through the network with a target, i.e.,
a predetermined node to reach. The first condition implies that the movement of
the entity can be modelled as a path. Data sets appropriate to use in this work
hence need to fulfil the following requirements

(i) it contains a network structure, given as graph G = (V,E)
(ii) it contains a set of paths of one or several entities moving through the

network, given as P = {P1, . . . , P`}
(iii) the entities move through the network with a predetermined goal to reach,
(iv) that they aim to reach as soon as possible.

We use the following data sets (see also Tab. 1).
Wikispeedia This data set provided by West et al. [23,24] contains (a sub-

set of) the network of Wikipedia articles where a node represents an article
and there exists an edge from one node to another if there exists a link in the
one article leading to the other article. The paths represent human navigation
paths, collected by the game Wikispeedia in which a player navigates from one
(given) article to another (given) article by following the links in the articles.
Only paths reaching their determined target are considered. We model the Wik-
ispeedia network as a directed, simple, unweighted graph (GW ) and the set of
paths as PW .

Rush Hour This data set contains a state space of a single-player board
game called Rush Hour where each node represents a possible game configuration
and there is an edge from node v to node w if configuration w can be reached from
v by a valid move in the game. We only include those nodes which are reachable
from the node representing the start configuration of the game. Since all moves
are reversible, the network is modelled as undirected unweighted graph (denoted
by GR) where one node represents the start configuration and one or more nodes
represent configurations in which the game is solved (final nodes). A path in this
data set is then the solution of a player trying to reach the final node from the
start node by a sequence of valid moves. Only paths ending in a final node are
considered. The set of paths will be denoted by PR. The data set was collected
by Pelánek and Jarušek [12] by their web-based tool for education (available
under tutor.fi.muni.cz).

DB1B This data set contains a sample of 10 % of all airline tickets of all
reporting airlines, including all intermediate stops of a passenger’s travel, pro-
vided by the US Bureau of Transportation Statistics which publishes for each
quarter of a year the Airline Origin and Destination Survey (DB1B) [18]. We
consider the passengers’ travels for the years 2010 and 2011. A path is a journey
of a passenger travelling from one airport to another, possibly with one or more
intermediate stops. The network (GD) is modelled as a simple directed and un-
weighted graph and is extracted from the ticket data by identifying city areas
(possibly including more than one airport) as nodes, and adding a directed edge
from a node v to a node w if at least one passenger’s journey contains a flight
from one airport in the area of node v to one airport in the area of node w.
Passengers’ journeys which are symmetric in the sense that the passenger trav-
els from airport A to airport B over i intermediate airports and via the same
intermediate airports back to A will be considered as two paths: one from A to
B and one from B to A.

http://tutor.fi.muni.cz


Data set Source Graph type Nodes Edges

Wikispeedia [24,23] directed articles hyperlinks
Rush Hour [12] undirected configurationsvalid game moves
DB1B [18] directed cities non-stop airline connections

Data set |V | |E| |P| path length
range average

Wikispeedia 4592 119804 51306 [1, 404] 5
Rush Hour 364 1524 3044 [3, 33] 5
DB1B 419 12015 63681979 [1, 14] 1.3

Table 1. Overview of the used data sets.

5 Assumptions of betweenness centrality

We chose our data sets such that the main assumption of the betweenness cen-
trality are met: a process is flowing through the network by transfer mechanism,
and whatever flows through it has a target to reach. Section 1 already pointed
out that there are more assumptions. The next section will investigate whether
those assumptions are satisfied in the selected data sets.

Process moves on shortest paths For each GX and corresponding PX , X ∈
{W,D,R}, and for each P ∈ PX , we compare |P | with d(s(P ), t(P )). The results
are shown in Fig. 2(a). For Rush Hour, d(s(P ), t(P )) = 3 for each P ∈ PR
because we only consider paths reaching a final node from the start node—
which is possible within three moves. For Wikispeedia, 1 ≤ d(s(P ), t(P )) ≤ 6 for
all P ∈ PW . One outlier path of length 404 and two paths of length 101 and 104
have been taken out of the analysis. All node pairs in the DB1B network that
were source and destination of any of the paths in PD can be reached within 4
flights. We can observe that for the DB1B data set, the taken journey is almost
always the shortest path between the airports. For Wikispeedia, the variation of
the path lengths is much larger than for DB1B. Although the median length of
the paths is greater than the length of the shortest path between its start and
end node, the difference is only about 1. The same holds for Rush Hour. Hence,
for all of the considered data sets, the assumption that the process is moving on
shortest paths is approximately true.

Process moves between every node pair Since the betweenness centrality counts
the (fraction of) shortest paths including a given node v and those fractions are
summed up over all possible node pairs (s, t) (with s 6= v and s 6= t 6= v), it is
assumed that there is traffic between every pair of nodes. Table 2 shows whether
this is a valid assumption for our data sets: In all data sets, almost all nodes are
visited by at least one path. Since the network for DB1B was constructed from
the paths, the number of used nodes is equal to the total number of nodes. It
is not surprising that the fraction of used nodes in the Rush Hour data set is
much smaller than in the other data sets, since all paths start at the network’s
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Fig. 2. Analysis to which extent the given data sets satisfy the assumptions that the
process moves on shortest paths (a), and that the process moves between each pair of
nodes with the same intensity (c).

start node and end in one of the final nodes. In the Wikispeedia data set, 90 %
of all nodes were used by at least one path. If, however, a node is only counted
if at least ten paths include this node, the percentage drops to 74 %. Figure 2(b)
shows this fact: it shows which portion of the nodes (contained in at least one
path), is used by at least which portion of paths.

Although the majority of the nodes are included in at least one path of the
data set, only a small fraction of the node pairs is actually used as source and
destination of any path (cf. Tab. 2 and Fig. 2(c)). For Rush Hour and Wik-
ispeedia, it rather seems to be an artifact: out of 132132 node pairs in GR, only
20 pairs can actually be used by a valid solving path, since it must start in the
start configuration and end in one of the 20 final configurations. In GW , there
are more than 21 million node pairs, but the data set contains “only” about 50k
paths which explains the small value. For GD on the other side, the fraction of
used node pairs is, although the highest of all data sets, surprisingly small. Al-
though the data contain 63m passengers’ travels over a time period of two years,
almost half of all airport (city) pairs is never taken as a passenger’s journey.

Equal amount of flow between every pair of nodes While the previous paragraph
showed that the assumption there is flow between every pair of nodes in the
network, is not met in the data sets, this paragraph provides evidence that the
assumption of equal flow between the nodes is also not true here. Figure 2(c)
shows the frequency distribution of all node pairs which are the source and
destination of at least one path in the data set, i.e., how many node pairs (y-
axis) are used by exactly x paths in the data set as source and destination. Note
the logarithmic scale on both axes. We see that although on different magnitudes,
the behaviour is qualitatively the same for all data sets. When picking a node pair
uniformly at random out of all node pairs used at least once, the probability is
very high to pick a pair which is the source and destination of only one path, and



very low to pick one which is the source and destination of more than thousand
paths although there are more than 50k and 63m paths, respectively.

6 Process-driven betweenness centrality measures

Since we have shown that the usual assumptions of the betweenness centrality
and about its underlying flow are not necessarily true, two questions arise. First,
how much does it matter that those assumptions are not true, and second, can
we do better? The information about how the entities move through the network
is given in the data sets and can therefore be incorporated into a process-driven
betweenness centrality measure (PDBC) which does not rely on the assumptions
of shortest paths, flow between every node pair with equal intensity. The follow-
ing section introduces four PDBC variants using different pieces of information
contained in the data sets. The first two keep the assumption of using short-
est paths (indicated by subscripted S), the next two count real paths from P
(indicated by a subscripted R). All four require a graph G = (V,E) and a set
of paths P in G to be given. As a general framework, we introduce a weighted
betweenness centrality by

Bw(v) =
∑
s∈V

∑
t∈V

w(s, t, v) · σst(v)

σst

with a weight function w : V ×V ×V → R. The standard betweenness centrality
is then Bc with the weight function wc(s, t, v) = 0, if s = t or s = v or v = t,
and wc(s, t, v) = 1 otherwise, and the standard betweenness centrality including
endpoints is BE with the weight function wE(s, t, v) = 1 for all s, t, v ∈ V .

Figure 3(a) shows an example graph with four paths in it, indicated by the
directed edges of different colours. Then, P = {P1, P2, P3, P4, P5, P6} with P1 =
(10, 1, 2, 3, 4, 6), P2 = (7, 3, 4, 6), P3 = (8, 7, 2, 3, 9, 4, 6), P4 = (7, 3, 9, 4, 6), P5 =

Data set Nodes Used Percentage

Wikspeedia 4592 4166 90%
Rush Hour 364 231 63 %
DB1B 419 419 100 %

Data set Pairs Used Percentage

Wikspeedia 21081872 28706 0.14%
Rush Hour 132132 19 0.01 %
DB1B 175142 92242 52.7 %

Table 2. Usage frequencies of the nodes of the networks: first part of the table shows
which fraction of the network nodes are used by at least one path in the data set.
Second part shows which fraction of all possible node pairs are source and destination
of at least one path in the data set.



(a) Example graph with paths.

Node Bc BE BR BSW BS BRW

1 16.67 34.67 10 2 2 2
2 2.3 20.33 21.17 0 0 4
3 32 50 22 3.5 2.5 6
4 20 38 15 6 4 6
5 2.33 20.33 0 0 0 0
6 0 18 8 5 3 5
7 8.67 26.67 11 3 1 4
8 2 20 6 2.5 1.5 1
9 0 18 13.68 0 0 4
10 0 18 5 1 1 1

(b) Values of PDBC variants.

Fig. 3. Example graph G and PDBC values for the shown graph.

(1, 2, 3, 9, 4), and P6 = (7, 2, 3, 9, 4, 6). The table in Fig. 3(b) shows the centrality
values of the nodes with respect to each measure.

Note that the evaluation of the results in Sec. 7 will focus on the resulting
rankings of the nodes with respect to the different measure variants, and not the
actual measure values, hence, no effort is made with any normalization of the
measures.

Variant BS Keeping the assumption of shortest paths, this variant only considers
shortest paths between nodes being source and destination of at least one path
in P. We define

BS(v) =
∑
s∈V

∑
t∈V

wS(s, t, v) · σst(v)

σst

with the weight function

wS(s, t, v) =

{
1 if ∃P ∈ P : s(P ) = s and t(P ) = t

0 else

For Fig. 3, the weights are wS(1, 4, ·) = wS(7, 6, ·) = wS(8, 6, ·) = wS(10, 6, ·) = 1
and wS(s, t, v) = 0 for all other s, t, v ∈ V . For node 3, the centrality value is

then BS(3) =
σ1,4(3)
σ1,4

+
σ8,6(3)
σ8,6

+
σ10,6(3)
σ10,6

+
σ7,6(3)
σ7,6

= 1
1 + 0

1 + 1
1 + 1

2 = 2.5.

Variant BSW Section 5 showed that in the considered data sets, there is much
more communication between some node pairs than between others. If a node
is contained in most of the paths between all highly-demanded node pairs, the
node should have a higher centrality than if it contained in the paths between
less demanded node pairs. We therefore make the weight function proportional
to the amount of flow between the node pair (hence the additional subsripted
W ). Formally, we define

BSW (v) =
∑
s∈V

∑
t∈V

wSW (s, t, v) · σst(v)

σst



with wSW (s, t, v) = |{P ∈ P|s(P ) = s, t(P ) = t}|. For the example in Fig. 3(a),
this yields wSW (1, 4, ·) = wSW (8, 6, ·) = wSW (10, 6, ·) = 1, wSW (7, 6, ·) = 3 and
wSW = 0 in all other cases. Since shortest paths are counted, it is clear that often
visited nodes as node 2 or 9 get a small value as they are not on any shortest
path between the used nodes.

Variant BR Unlike the previous two measures, this and the next variant count
in how many real paths a node is contained in (therefore the subscript R). We
define a process-driven version of σst and σst(v): In order to keep the assumption
that the process flows between any pair of nodes, we define σP·st· as the number
of paths in P containing s and t, and σP·st·(v) as the number of paths in P that
contain s and t, and v in between. (Otherwise, if the σP·st· was defined as the
number of paths in P with start node s and end node t, node pairs which are
not start and end node of any path do not contribute to the centrality value.)
We then define

BR(v) =
∑
s∈V

∑
t∈V

wR(s, t, v) · σ
P
·st·(v)

σP·st·

with the convention 0
0 = 0 and wR(s, t, v) = 1 for all s, t, v ∈ V with s 6= t. Note

that node pairs where at least one of the nodes is not contained in any paths in
P do not contribute anything to the sum. In Fig. 3(a), all nodes except of node
5 are contained in a path from P, we therefore get for node 2,

BR(2) =
σP·1,2·(2)

σP·1,2·
+· · ·+

σP·7,9·(2)

σP·7,9·
+· · ·+

σP·10,6·(2)

σP·10,6·
=

2

2
+· · ·+ 2

3
+· · ·+ 1

1
= 21.17

We see that some nodes with a small centrality value with respect to Bc
because they are not on (many) shortest paths, have a larger centrality value
in this variant. For example, node 9 or node 2 have a minor importance with
respect to BS , but rise in importance wrt BR because they are contained in a
certain number of real paths.

Variant BRW This variant combines all three kinds of information about the
process in the network: counting real paths instead of shortest paths, only be-
tween those node pairs actually used as source and destination of the process
instead of all, and weighting a node pair’s contribution according to the amount
of flow between the node pairs instead of assuming an equal amount. Formally,
it is defined as

BRW (v) =
∑
s∈V

∑
t∈V

wRW (s, t, v) · σ
P
st(v)

σPst
= |{P ∈ P|v ∈ P}|

with wRW (s, t, v) = wSW (s, t, v) = |{P ∈ P|s(P ) = s, t(P ) = t}|. It is a kind
of stress betweenness centrality. We see in Fig. 3 that node 3 which is central
with respect to all previously considered centrality measures is also central with
respect to BRW , but nodes as 9 and 2 rise in importance because a considerable
amount of paths passes through them.



Measures to compare We have introduced four variants of PDBC measures.
Section 7 will describe how the centrality value of nodes (rather their position
in the resulting ranking) will be affected when the PDBC measures are applied
to the described data sets. For Wikispeedia and DB1B, it seems appropriate to
compare the node rankings with those of BE . However, for Rush Hour, this is
different: since GR represents the state space of a game, a valid path in this graph
needs to start in the start node of GR, and, in order to be a solving path, needs
to end in one of the final states. This is why we introduce the game betweenness
centrality for this case by

BG(v) =
∑
s∈V

∑
t∈V

wG(s, t, v) · σst(v)

σst

with wG(s, t, ·) = 1 if s is start node and t final node, and wG(s, t, ·) = 0
otherwise.

count how sum over s, t with weight

BS shortest paths ∃P ∈ P : s → t 1

BSW shortest paths ∃P ∈ P : s → t # real paths s → t

BR real paths → s → v → t → s, t ∈ V 1

BRW real paths s → v → t ∃P ∈ P: s → t # real paths s → t

Table 3. Categorization of the introduced process-driven betweenness centralities
(PDBC).

7 Results

We computed the four PDBC variants and BE for the networks described in
Sec. 4. We are not interested in the exact values, but in the resulting order of
importance of the nodes, only the resulting rankings are considered. We apply
fractional ranking where nodes with the same measure value are assigned the
average of ranks which they would have gotten without the ties.

Measure correlations Figure 4 (left) shows the rankings of the nodes in the data
sets wrt all PDBC measures as well as BE and (for Rush Hour) BG. We can
observe that for Wikispeedia and DB1B, there is a strong correlation between
the node rankings wrt all variants. However, the correlations are less strong for
Wikispeedia than for DB1B. Furthermore, the correlation of the PDBC variants
with BE is very low for the Rush Hour data set (largest value is 0.46). However,
the rankings wrt the PDBC variants counting shortest paths (BSW , BS) corre-
late with the game betweenness centrality (correlation of 0.97), but not those
variants counting real paths (BR, BRW ). In all three data sets, although the
most nodes have a similar ranking position in all variants, there are nodes which
are rated as important by one measure, and very unimportant by to another
measure.
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Fig. 4. Left. Rankings of the network nodes in all PDBC variants and the standard
betweenness centrality including endpoints (BE). Low value on the axes indicates high
centrality value. The red lines are linear regressions of the nodes’ rankings. The value of
the (rounded) Pearson correlation coefficient between the corresponding rankings can
be found in the corresponding box, it is red if p < 0.05, blue otherwise. Right. Ranking
behaviour of those nodes which are among the ten most central nodes with respect to
at least one of the measures. Note the logarithmic scale on the y-axis. Colours are given
according to the node’s ranking wrt BE (for Wikispeedia and DB1B) or wrt the game
betweenness centrality (for Rush Hour).



Most central nodes We are interested in those nodes which are central with re-
spect to at least one centrality measure. Figure 4 (right) shows the behaviour
of the ranking of nodes which are among the ten nodes with highest centrality
values for at least one of the measure variants. We can observe that in none
of the data sets, it is the same set of ten nodes most central with respect to
all measure variants. In all three data sets, the ranking wrt BS is very similar
to the ”baseline” betweenness centrality, i.e., BE for Wikispeedia and DB1B,
and game betweenness centrality for Rush Hour. This implies that the PDBC
variant with shortest paths and weights ∈ {0, 1} does not affect the ranking of
the most central nodes with respect to BE . This is surprising because Sec. 5
showed that in those data sets, only a small part of all node pairs are actually
used as source and target. Furthermore, for Rush Hour and DB1B, the ranking
wrt BRW is very different to the others, for Wikispeedia, however, the ranking
with respect to BRW is not too different to the ones wrt BSW , and BS . It is
remarkable that for Wikispeedia, there is one node (the article United States)
which is the most central with respect to BE , but also the most (or at most
third) central with respect to all PDBC variants. This cannot be observed in
any of the two other data sets. Also the nodes of the Wikispeedia network on
ranking position 2 to 5 wrt BE are among the most central ones wrt all PDBC
variants (except of BR). The scale by which the considered nodes in- or decrease
in ranking positions is different for the data sets: for DB1B, all nodes among
the ten most central nodes wrt at least one of the variants, are among the 52
most central nodes wrt all variants (out of 419 possible ranking positions). This
is different for the other two data sets: for Rush Hour, there are nodes which
are among the ten most central nodes with respect to BSW and BRW , but have
a ranking of 357 (out of 364) with respect to BE . However, when examining
those nodes, it turns out that those are final nodes and nodes adjacent to final
states. More interesting are those nodes which are among the least central nodes
with respect to the game betweenness centrality, but among the ten most cen-
tral nodes wrt BR and BRW—those measures which count actually used paths
instead of shortest paths. Those nodes are neither start nor solution states and
although there are not on any shortest path from the start to any solution state,
those nodes seem to be preferred by human players when solving this game.
For Wikispeedia, there are nodes which ranking increases considerably: from
ranking position 1843 (out of 4592) wrt BE to position 5 wrt BR (node Com-
munication) or from position 1206 to 6 wrt BSW (Telephone). Those big jumps
in rank position might, however, partly be an effect of the data collection: there
are four source-target-pairs which are suggested to the players with increased
frequency as start and target node for the game for a certain period of time
(Pyramid→Bean, Brain→Telephone, Asteroid→Viking, Theatre→Zebra) [22].
This means that paths with these sources/targets are contained more often than
others. This explains why these nodes increase in importance when consider-
ing BSW , but does not explain why they increase in importance in the same
magnitude with respect to BR.



8 Summary and Future Work

This work used available data sets containing the trajectories of entities in a
network structure in order to compute a process-driven centrality measure for
the nodes. The idea is to use the available information about how a process
moves through the network in order to rank the nodes according to their impor-
tance with respect to this process. We chose data sets such that the two main
assumptions of the betweenness centrality are met and it is therefore appropri-
ate to actually use this centrality measure. We could show that while assuming
shortest paths in those data sets can be justified, other assumptions of the be-
tweenness centrality are not satisfied. We therefore introduced four variants of
process-driven betweenness centrality measures (PDBC) which incorporate the
information contained in the data sets. The resulting node rankings of most
variants show high correlations to each other as well as to the standard between-
ness centrality. Nevertheless, we can observe that incorporating the information
about the process has an effect on the most central nodes with respect to the
standard betweenness centrality and can in- or decrease a node’s ranking by sev-
eral thousands ranks. We furthermore observe that the different process-driven
betweenness variants affect the node rankings in the three data sets in different
ways.

Open questions left for future work are for example: it is obvious that the
quality and validity of the results of PDBC is highly dependent on the quantity
and quality of the available data. This yields two future directions: collect and
compile more path data sets of high quality, and investigate which properties
the set P must satisfy in order to make a reasonable statement. Additionally,
networks develop dynamically over time: if an edge is not used by the process, it
might disappear at some point, and if there is a large amount of traffic between
two nodes with a larger distance, there might appear a shortcut between them.
Considering the usage of the network by available path data might therefore a
tool for predicting a network’s change of structure.

References

1. Anthonisse, J.M.: The rush in a directed graph. Tech. Rep. BN 9/71, Stichting
Mathematisch Centrum, Amsterdam (1971), (unpublished)

2. Bavelas, A.: A mathematical model for group structures. Human Organization
7(3), 16–30 (1948)

3. Bonacich, P.: Factoring and weighting approaches to status scores and clique iden-
tification. Journal of Mathematical Sociology 2(1), 113–120 (1972)

4. Borgatti, S.P.: Centrality and network flow. Social Networks 27(1), 55–71 (2005)
5. Borgatti, S.P., Everett, M.G.: A graph-theoretic perspective on centrality. Social

Networks 28(4), 466 – 484 (2006)
6. Carpenter, T., Karakostas, G., Shallcross, D.: Practical issues and algorithms for

analyzing terrorist networks. In: Proceedings of the Western Simulation MultiCon-
ference (2002)

7. Dolev, S., Elovici, Y., Puzis, R.: Routing betweenness centrality. Journal of the
ACM 57(4), 25:1–25:27 (2010)



8. Dorn, I., Lindenblatt, A., Zweig, K.A.: The trilemma of network analysis. In: Pro-
ceedings of the International Conference on Advances in Social Networks Analysis
and Mining (ASONAM). pp. 9–14. Washington, DC, USA (2012)

9. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry
pp. 35–41 (1977)

10. Freeman, L.C.: Centrality in social networks conceptual clarification. Social net-
works 1(3), 215–239 (1978)

11. Freeman, L.C., Borgatti, S.P., White, D.R.: Centrality in valued graphs: A measure
of betweenness based on network flow. Social networks 13(2), 141–154 (1991)
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14. Koschützki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlo-

towski, O.: Centrality indices. In: Brandes, U., Erlebach, T. (eds.) Network Anal-
ysis, Lecture Notes in Computer Science, vol. 3418, pp. 16–61. Springer Berlin
Heidelberg (2005)

15. Milgram, S.: The small world problem. Psychology today 2(1), 60–67 (1967)
16. Newman, M.E.: A measure of betweenness centrality based on random walks. Social

networks 27(1), 39–54 (2005)
17. Qin, J., Xu, J.J., Hu, D., Sageman, M., Chen, H.: Analyzing terrorist networks: A

case study of the global salafi jihad network. Intelligence and security informatics
pp. 287–304 (2005)

18. RITA TransStat: Origin and Destination Survey database (DB1B) (2016)
19. Rosvall, M., Esquivel, A.V., Lancichinetti, A., West, J.D., Lambiotte, R.: Memory

in network flows and its effects on spreading dynamics and community detection.
Nature communications 5 (2014)

20. Sabidussi, G.: The centrality index of a graph. Psychometrika 31(4), 581–603 (1966)
21. Sudarshan Iyengar, S., Veni Madhavan, C., Zweig, K.A., Natarajan, A.: Under-

standing human navigation using network analysis. Topics in cognitive science
4(1), 121–134 (2012)

22. West, R.: Human Navigation of Information Networks. Ph.D. thesis, Stanford Uni-
versity (2016)

23. West, R., Leskovec, J.: Human wayfinding in information networks. In: Proceedings
of the 21st international conference on World Wide Web. pp. 619–628. ACM (2012)

24. West, R., Pineau, J., Precup, D.: Wikispeedia: An online game for inferring se-
mantic distances between concepts. In: IJCAI International Joint Conference on
Artificial Intelligence. pp. 1598–1603 (2009)

25. Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y.: T-drive:
driving directions based on taxi trajectories. In: Proceedings of the 18th SIGSPA-
TIAL International conference on advances in geographic information systems. pp.
99–108. ACM (2010)

26. Zheng, Y., Zhang, L., Xie, X., Ma, W.Y.: Mining interesting locations and travel
sequences from GPS trajectories. In: Proceedings of the 18th international confer-
ence on World wide web. pp. 791–800. ACM (2009)


	Process-driven betweenness centrality measures

